Applied Engineering


Submit a Manuscript

Publishing with us to make your research visible to the widest possible audience.

Propose a Special Issue

Building a community of authors and readers to discuss the latest research and develop new ideas.

Research Article |

Development of a New Aerodynamic Method for the Mechanical Characterization of a Horizontal Axis Wind Turbine

The aim of this work is to propose a new method for calculating the aerodynamic forces of wind turbine blades and the power developed by them. To this end, the blade element momentum, prescribed wake and free wake methods were compared for speed ranges from 5 to 20m/s. The two-bladed NREL PHASE IV wind turbine with profile S 809 was used as the physical model, with the polars extrapolated to 90° using the Viterna method and then extended from -180 to 180° using flat theory. The largest error in power output was 47% at 5 m/s using PVM, the second largest was 16% at 10 m/s using BEM, and the third largest was 13% at 10 m/s using FVM. In or-der to reduce the percentage error of the PVM, the phenomen of vortex core growth has been in-tegrated into this method. The error at 5m/s was reduced from 47% to 8.29%, and the maximum error of the modified method was 9.19% observed at 18m/s. The new method was then compared to the Reynolds-averaged Navier-Stokes equation from the literature for the same velocity range. The maximum error observed was 8% at 10m/s for the RANS and 9.19% at 18 m/s for the new method.

Aerodynamic Modeling, Horizontal Axis Wind Turbine, BEM, PVM, FVM

Choupo Yuego, Maxwell Tientcheu Nsiewe, Balbine Matuam Tamdem, Nicolas Gnepie-Takam, Alexis Kuitche. (2023). Development of a New Aerodynamic Method for the Mechanical Characterization of a Horizontal Axis Wind Turbine. Applied Engineering, 7(2), 37-46.

Copyright © 2023 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License ( which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Berlu “calcul des efforts subit par une éolienne moyenne et forte puissance», PhD thesis defended at the university of Sciences and Technologies of Lille 1, (2000), 360 pages.
2. Chkir “Contribution à l’étude aérodynamique d’une ´éolienne par une méthode de sillage libre’’, PhD thesis defended at the national school of art and profession, Paris France, (2010), 136 pages.
3. Maalouf “Étude des phénomènes tourbillonnaires dans le sillage éolien’’ PhD thesis defended at the national school of art and profession, Paris France, (2010), 149 pages.
4. Mahri, M. S. Rouabah et S. Zid “Calcul des efforts aérodynamiques agissant sur les pales d’une petite éolienne », Revue des Energies Renouvelables Vol. 10 N°2 (2007) pp 241–256.
5. Guang, W. Long, Z. Wei, X. Bofeng and C. Li “Large-scale wind turbine blade design and aerodynamic analysis”, Chin Sci Bull, 57 (2012) pp 466–472, doi: 10.1007/ s11434-011-4856-6, doi: 10.1007/s11434-011-4856-6.
6. Padmanabhan and R. Saravanan “Study of the Performance and Robustness of NREL and NACA Blade for Wind Turbine Applications”, European Journal of Scientific Research ISSN 1450-216X Vol. 72 No. 3 (2012), pp. 440-446.
7. Shen, R. Mikkelsen and J. N. Sørensen. “Tip Loss Corrections for Wind Turbine Computations”, Wind Energy 8 (2005) pp 457-475.
8. Clifton and D. H. Wood “Further dual purpose evolutionary optimization of small wind turbine blades”, Journal of Physics: Conference Series 75 (2007) pp 012-017, doi: 10.1088/1742-6596/75/1/012017.
9. Hassanzadeh, A. H. Hassanabad, and A. Dadvand “Aerodynamic shape optimization and analysis of small wind turbine blades employing the Viterna approach for post - stall region” Alexandria Engineering Journal 55 (2016), 2035-2043 Alexandria Engineering Journal (2016) 55, 2035–2043,
10. Khchine and M. Sriti “Tip loss factor effects on aerodynamic performances of horizontal axis wind turbine”, energy procedia 11 (2017) pp 136-140.
11. Kavari, M. Tahani and M. Mirhosseini “Wind Shear Effect on Aerodynamic Performance and Energy Production of Horizontal Axis Wind Turbines with Developing Blade Element Momentum Theory”, Journal of Cleaner Production 073 (2019), pp 1-22 doi: 10.1016/j.jclepro.2019.02.073.
12. Burton, D. Sharpe, N. Jenkins E. Bossanyi “Wind Energy Handbook’’ ed John Wiley and Sons, ISBN 0-471-48997-2 Library of Congress, (2001) 644 pages.
13. Kocurek “Lifting surface performance analysis for horizontal axis wind turbines”, Solar Energy Research Inst., Golden, CO (USA) (1987).
14. Dumitrescu and V. Cardos “Wind Turbine Aerodynamic Performance by Lifting Line Method “, Int. J. Rotating Mach., vol. 4 no. 3, (1998) pp. 141–149.
15. Currin, F. N. Coton and B. Wood “Dynamic Prescribed Vortex Wake Model for aerodyn/fast” Journal of Solar Energy Engineering vol. 130, no. 3, (2008) pp 31007.
16. Meglagloui “contribution à l’étude d’une chaine de conversion éolienne de faible puissance à axe horizontal” PhD thesis defended at the university of Badji Mokhtar-Annaba Algeria (2018), 96 pages.
17. Sebastian, M. A. Lackner “Development of a free vortex wake method code for offshore floating wind turbines”, Renewable Energy 46 (2012) pp 269-275, doi: 10.1016/j.renene;2012.03.033.
18. Rodriguez, J. Jaworski, J. Michopoulos “Stability of helical vortex structures shed from flexible rotors” Journal of Fluids and Structures 104 (2021), pp 1-27,
19. Xu, J. Feng, T. Wang, Y. Yuan, and Z. Zhao “Application of a turbulent vortex core model in the free vortex wake scheme to predict wind turbine aerodynamics” journal of renewable and sustainable energy 10, (2018) pp 1-15.
20. Xu, T. Wang, Y. Yuan, Z. Zhao, H. Liu “A Simplified Free Vortex Wake Model of Wind Turbines for Axial Steady Conditions”, Appl. Sci. 8, (2018) pp 1-18.
21. Lindenburg “Investigation into rotor blade aerodynamics “, ECN-C-03-025, (2003), 114 pages.
22. Leishman, J Gordon. 2002. “Challenges in modelling the unsteady aerodynamics of wind turbines“ Wind Energy: An International Journal for Progress and Applications in Wind Power Conversion Technology 5 (2 3) pp 85-132.
23. Larsen T J, Madsen H Aa, Gunner C. Larsen G C, Hansen K S. Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm. Wind Energy, Vol. 2 (2013), pp 605-624.
24. Göçmen, Tuhfe, Paul Van der Laan, Pierre-Elouan Réthoré, Alfredo Peña Diaz, Gunner Chr Larsen, et Søren Ott. ‘’Wind turbine wake models developed at the technical university of Denmark: A review’’. Renewable and Sustainable Energy Reviews 60 (2016) pp 752-769.
25. Brusca, Sebastian, Rosario Lanzafame, Fabio Famoso, Antonio Galvagno, Michele Messina, Stefano Mauro, et Mauro Prestipino. “On the wind turbine wake mathematical modelling’’. Energy Procedia 148 (2018) pp 20-29.
26. Zhan, Lu, Stefano Letizia, et Giacomo Valerio Iungo. “Optimal tuning of engineering wake models through lidar measurements’’. Wind Energy Science 5 (4) (2020) pp 1601-22.
27. Viterna, Larry A. and Janetzke, David C. (NASA Lewis Research Center); ‘Theoretical andexperimental power from large horizontal-axis wind turbines’. SERI/CP-635-1340, Vol. II (1981) pp 265-280.
28. Polat, Ozge, and Ismail H Tuncer “Aerodynamic shape optimization of wind turbine blades using a parallel genetic algorithm”, Procedia engineering 61 (2013), pp 28 31, doi: 10.1016/j.proeng.2013.07.088.
29. Derakhshan and A. Tavaziani “Study of Wind Turbine Aerodynamic Performance Using Numerical Methods”, Journal of Clean Energy Technologies, Vol. 3, No. 2, (2015) pp 83-90.
30. Chehouri, Adam, Rafic Younes, Adrian Ilinca, et Jean Perron. 2015. “Review of performance optimization techniques applied to wind turbines”. Applied Energy 142: pp 36 88